Abstract

A simple catheter disk model system was used to study the development in vitro of mixed species biofilms of Candida albicans and Staphylococcus epidermidis, two organisms commonly found in catheter-associated infections. Two strains of S. epidermidis were used: a slime-producing wild type (strain RP62A) and a slime-negative mutant (strain M7). In mixed fungal-bacterial biofilms, both staphylococcal strains showed extensive interactions with C. albicans. The susceptibility of 48-h biofilms to fluconazole, vancomycin and mixtures of the drugs was determined colorimetrically. The results indicated that the extracellular polymer produced by S. epidermidis RP62A could inhibit fluconazole penetration in mixed fungal-bacterial biofilms. Conversely, the presence of C. albicans in a biofilm appeared to protect the slime-negative staphylococcus against vancomycin. Overall, the findings suggest that fungal cells can modulate the action of antibiotics, and that bacteria can affect antifungal activity in mixed fungal-bacterial biofilms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.