Abstract
We consider mixed control problems for diffusion processes, i.e. problems which involve both optimal control and stopping. The running reward is assumed to be smooth, but the stopping reward need only be semicontinuous. We show that, under suitable conditions, the value function w has the same regularity as the final reward g, i.e. w is lower or upper semicontinuous if g is. Furthermore, when g is l.s.c., we prove that the value function is a viscosity solution of the associated variational inequality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.