Abstract

Applications of compressed sensing motivate the possibility of using different operators to encode and decode a signal of interest. Since it is clear that the operators cannot be too different, we can view the discrepancy between the two matrices as a perturbation. The stability of ¿ <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sub> -minimization and greedy algorithms to recover the signal in the presence of additive noise is by now well-known. Recently however, work has been done to analyze these methods with noise in the measurement matrix, which generates a multiplicative noise term. This new framework of generalized perturbations (i.e., both additive and multiplicative noise) extends the prior work on stable signal recovery from incomplete and inaccurate measurements of Cande¿s, Romberg and Tao using Basis Pursuit (BP), and of Needell and Tropp using Compressive Sampling Matching Pursuit (CoSaMP). We show, under reasonable assumptions, that the stability of the reconstructed signal by both BP and CoSaMP is limited by the noise level in the observation. Our analysis extends easily to arbitrary greedy methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.