Abstract
<p>The modern digital world comprises of transmitting media files like image, audio, and video which leads to usage of large memory storage, high data transmission rate, and a lot of sensory devices. Compressive sensing (CS) is a sampling theory that compresses the signal at the time of acquiring it. Compressive sensing samples the signal efficiently below the Nyquist rate to minimize storage and recoveries back the signal significantly minimizing the data rate and few sensors. The proposed paper proceeds with three phases. The first phase describes various measurement matrices like Gaussian matrix, circulant matrix, and special random matrices which are the basic foundation of compressive sensing technique that finds its application in various fields like wireless sensors networks (WSN), internet of things (IoT), video processing, biomedical applications, and many. Finally, the paper analyses the performance of the various reconstruction algorithms of compressive sensing like basis pursuit (BP), compressive sampling matching pursuit (CoSaMP), iteratively reweighted least square (IRLS), iterative hard thresholding (IHT), block processing-based basis pursuit (BP-BP) based onmean square error (MSE), and peak signal to noise ratio (PSNR) and then concludes with future works.</p>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Electrical and Computer Engineering (IJECE)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.