Abstract

The Darboux transformation of the three-component coupled derivative nonlinear Schr\"{o}dinger equations is constructed, based on the special vector solution elaborately generated from the corresponding Lax pair, various interactions of localized waves are derived. Here, we focus on the higher-order interactional solutions among higher-order rogue waves (RWs), multi-soliton and multi-breather. Instead of considering various arrangements among the three components $q_1$, $q_2$ and $q_3$, we define the same combination as the same type solution. Based on our method, these interactional solutions are completely classified into six types among these three components $q_1$, $q_2$ and $q_3$. In these six types interactional solutions, there are four mixed interactions of localized waves in three different components. In particular, the free parameters $\alpha$ and $\beta$ paly an important role in dynamics structures of the interactional solutions, for example, different nonlinear localized waves merge with each other by increasing the absolute values of $\alpha$ and $\beta$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.