Abstract

From the observation that self-similar solutions of conservation laws in two space dimensions change type, it follows that for systems of more than two equations, such as the equations of gas dynamics, the reduced systems will be of mixed hyperbolic-elliptic type, in some regions of space. In this paper, we derive mixed systems for the isentropic and adiabatic equations of compressible gas dynamics. We show that the mixed systems which arise exhibit complicated nonlinear dependence. In a prototype system, the nonlinear wave system, this behavior is much simplified, and we outline the solution to some typical Riemann problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.