Abstract
In this paper a higher-order mixed finite element method for elastoplasticity with linear kinematic hardening is analyzed. Thereby, the non-differentiability of the involved plasticity functional is resolved by a Lagrange multiplier leading to a three field formulation. The finite element discretization is conforming in the displacement field and the plastic strain but potentially non-conforming in the Lagrange multiplier as its Frobenius norm is only constrained in a certain set of Gauss quadrature points. A discrete inf-sup condition with constant 1 and the well posedness of the discrete mixed problem are shown. Moreover, convergence and guaranteed convergence rates are proved with respect to the mesh size and the polynomial degree, which are optimal for the lowest order case. Numerical experiments underline the theoretical results.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have