Abstract

The current numerical investigation will examine the effect of an impinging mixed convection air jet on the heat transfer rate of a parallel flat plate heat sink. A three-dimensional numerical model was developed to evaluate the effects of the nozzle diameter d, nozzle-to-target vertical placement H/d, Rayleigh number, and the jet Reynolds number on the heat transfer rates from a discrete heat source. Simulations were performed for a Prandtl number of 0.7 and for Reynolds numbers ranging from 100 to 5000. The governing equations were solved in the dimensionless form using a commercial finite-volume package. Average Nusselt numbers were obtained, at H/d=3 and two jet diameters, for the bare heat source, for the heat source with a base heat sink, and for the heat source with the finned heat sink. The heat transfer rates from the bare heat source surface have been compared with the ones obtained with the heat sink in order to determine the overall performance of the heat sink in an impingement configuration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.