Abstract

Laminar mixed convection flow and heat transfer to power-law fluids from a square cylinder has been analyzed numerically in the steady flow regime. The full momentum and energy equations along with the Boussinesq approximation have been solved by using a SMAC implicit finite difference method implemented on an uniform staggered grid arrangement for the range of Reynolds number 5 to 40, power-law index 0.6 to 1.4, Prandtl number 1 to 10 and Richardson number 0 to 0.5 in both bounded and unbounded flow configurations. The wall effects have been studied for a fixed blockage ratio of 1/15. The effects of buoyancy on the flow and heat transfer characteristics of power-law fluids have been elucidated. It is found that the mixed convection can initiate an asymmetry in the flow and temperature fields even within the steady flow regime. The variation of drag coefficients, and of the Nusselt number have been reported for a range of values of the Reynolds number, Prandtl number and Richardson number for both shear thickening and shear thinning fluids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.