Abstract

AbstractThis article investigates the Hall and ion‐slip impacts on the mixed convection flow of a Maxwell nanofluid over an expanding surface in a permeable medium. The impacts of Brownian movement and thermophoresis parameters, Soret, Dufour, viscous dissipation, chemical reaction, and suction parameters, are, moreover, considered. Using the similitude changes, the partial differential equations with regard to the momentum, energy, and concentration equations are transformed to an arrangement of nonlinear ordinary differential equations, which are handled numerically utilizing a spectral relaxation method (SRM). The impacts of noteworthy physical parameters on the velocities, thermal, and concentration distributions are investigated graphically. Moreover, the numerical values of skin‐friction coefficients, local Nusselt number, and Sherwood number for different values of the mixed convection parameter Deborah number Hall parameter ion‐slip parameter Dufour number (Du), and Soret number are computed and tabulated. It is discovered that ascent in Deborah number reduces both the stream and transverse velocity profiles, while the inverse pattern is seen with augmentation in the mixed convection parameter. In addition, inverse patterns of the stream and transverse velocity profiles are seen with expansion in magnetic, Hall, and ion‐slip parameters. Besides this, the temperature and concentration disseminations decline with augmentation in Dufour number and chemical reaction parameters, respectively. It is likewise seen that both the skin‐friction coefficients lessen with expansion in Deborah number, and they ascend with upgrade in blended convection and ion‐slip parameters, while the opposite condition is noticed with augmentation in Hall parameter. Furthermore, the reverse trends of local Nusselt and Sherwood numbers are discovered with expansion in the Dufour and Soret numbers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call