Abstract
The mixed alkali borate xNa 2O–(30− x)K 2O–70B 2O 3 (5≤ x≤25) glasses doped with 1 mol% of manganese ions were investigated using EPR and optical absorption techniques as a function of alkali content to look for ‘mixed alkali effect’ (MAE) on the spectral properties of the glasses. The EPR spectra of all the investigated samples exhibit resonance signals which are characteristic of the Mn 2+ ions. The resonance signal at g≅2.02 exhibits a six line hyperfine structure. In addition to this, a prominent peak with g≅4.64, with a shoulder around g≅4.05 and 2.98, was also observed. From the observed EPR spectrum, the spin-Hamiltonian parameters g and A have been evaluated. It is interesting to note that some of the EPR parameters do show MAE. It is found that the ionic character increases with x and reaches a maximum around x=20 and thereafter it decreases showing the MAE. The number of spins participating in resonance ( N) at g≅2.02 decreases with x and reaches a minimum around x=20 and thereafter it increases showing the MAE. It is also observed that the zero-field splitting parameter ( D) increases with x, reaches a maximum around x=15 and thereafter decreases showing the MAE. The optical absorption spectrum exhibits a broad band around ∼20,000 cm −1 which has been assigned to the transition 6A 1g(S)→ 4T 1g(G). From ultraviolet absorption edges, the optical bandgap energies and Urbach energies were evaluated. It is interesting to note that the Urbach energies for these glasses decrease with x and reach a minimum around x=15. The optical band gaps obtained in the present work lie in the range 3.28–3.40 eV for both the direct and indirect transitions. The physical parameters of all the glasses were also evaluated with respect to the composition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.