Abstract

Mitoxantrone is a synthetic anticancer drug used clinically in the treatment of different types of cancer. It was developed as a doxorubicin analogue in a program to find drugs with improved antitumor activity and decreased cardiotoxicity compared with the anthracyclines. As the cell membrane is the first barrier encountered by anticancer drugs before reaching the DNA sites inside the cells and as surfactant micelles are known as simple model systems for biological membranes, the drugs-surfactant interaction has been the subject of great research interest. Further, quantitative understanding of the interactions of drugs with biomimicking structures like surfactant micelles may provide helpful information for the control of physicochemical properties and bioactivities of encapsulated drugs in order to design better delivery systems with possible biomedical applications. The present review describes the physicochemical aspects of the interactions between the anticancer drug mitoxantrone and different surfactants. Mitoxantrone-micelle binding constants, partitions coefficient of the drug between aqueous and micellar phases and the corresponding Gibbs free energy for the above processes, and the probable location of drug molecules in the micelles are discussed.

Highlights

  • Mitoxantrone (1,4-dihydroxy-5,8-bis[2-(2-hydroxyethylamino)ethylamino]anthracene-9,10-dione) is a synthetic anthracenedione anticancer drug developed in the 1980s as a doxorubicin analogue in a program to find drugs with improved antitumor activity and decreased cardiotoxicity compared with the anthracyclines [1]

  • This review provides an overview on these studies regarding the interaction of mitoxantrone with different surfactants

  • The binding of mitoxantrone to CTAB micelles is sensitive to the charge state of the drug: the coulombic repulsion between positively charged mitoxantrone at pH 7.4 and micelle cationic head group leads to a decrease of binding constant in comparison with pH 10 [42]

Read more

Summary

Introduction

Mitoxantrone (1,4-dihydroxy-5,8-bis[2-(2-hydroxyethylamino)ethylamino]anthracene-9,10-dione) is a synthetic anthracenedione anticancer drug developed in the 1980s as a doxorubicin analogue in a program to find drugs with improved antitumor activity and decreased cardiotoxicity compared with the anthracyclines [1]. It is the only drug of the anthracenedione class approved for clinical use. The antitumor activity of mitoxantrone is related to its ability to bind to DNA and to inhibit both DNA replication and DNA-dependent RNA synthesis [15,16,17,18,19,20,21]. DNAphosphate phosphatebackbone backbone [23]

Chemical structures
UV-Vis Absorption Studies
Polarity of the Micellar Environment and Probable Location of Mitoxantrone
Binding Parameters
Binding Constant
Partition Coefficient
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.