Abstract
The outcome of chemotherapy for osteosarcoma have improved during the past decade and more patients have access to combination chemotherapy, but there has been no significant clinical progress in the patient survival rate. Recently, forkhead-box O3 (FOXO3) was identified as a pivotal transcription factor responsible for the transcriptional regulation of genes associated with suppression of cancer. The purpose of the present study was to screen small chemicals activating FOXO3 and elucidate their underlying mechanism. Using a drug discovery platform based on the phosphorylation status of FOXO3 in osteosarcoma cells, mitoxantrone (MTZ), a type of DNA-damaging agent, was selected as a possible FOXO3 activator from the food and drug administration-approved drug library. MTZ treatments significantly inhibited the phosphorylation level of Akt-pS473 and caused nuclear localization of FOXO3 in osteosarcoma cells. MTZ treatment inhibited proliferation in osteosarcoma cells in vitro, whereas silencing FOXO3 potently attenuates MTZ-mediated apoptosis in osteosarcoma cells. Taken together, the results indicated that MTZ induces apoptosis in osteosarcoma cells through an Akt/FOXO3-dependent mechanism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.