Abstract

With rapid advances in next-generation sequencing technologies, the genomes of many organisms have been sequenced and widely applied in different settings. Mitochondrial genome data is equally important and the high-throughput whole-genome data typically contain mitochondrial genome (mitogenome) sequences. How to extract and assemble the mitogenome from massive whole-genome sequencing (WGS) data remain a hot area in molecular biology, genetics and medicine. The cataloging and analysis of accumulating mitogenome data promotes the development of assembly strategies and corresponding software applications related to mitochondrial DNA from the WGS data. Mitogenome assembly strategies can be divided into mitogenome-reference strategy and de novo strategy. Each strategy has different advantages and limitations with respect to the difference of bait mitogenome-linked short reads from the WGS data and corresponding assembly strategy. In this review, we summarize and compare current mitogenome assembly strategies and the software applications available. We also provide suggestions related to use different assembly strategies and software applications, and the expected benefits and limitations of methods references in life science.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call