Abstract

We have recently reported the discovery of a 14-amino-acid osteogenic growth peptide (OGP). In vivo OGP increases bone formation and trabecular bone density. Physiologically it is found in serum complexed to an OGP binding protein (OGPBP). In vitro OGP has a biphasic effect on osteoblastic MC 3T3 E1 and fibroblastic NIH 3T3 cell proliferation; at low concentrations (0.01–1.0 and 1.0–100.0 pM, respectively) it is highly stimulatory with an inhibition at higher doses. To assess possibilities of labeling synthetic OGP to obtain radio- or fluorescent ligands, OGP analogues were extended at the N- or C-termini with Cys or Cys(S-NEtSucc) or the OGP Tyr-10 replaced by 3-I(Tyr). All analogues with N-terminal modifications, as well as the [Cys 15]OGP-NH 2 retained the OGP-like dose-dependent effect on proliferation of the MC 3T3 E1 and NIH 3T3 cells, although the magnitude of stimulation was lower, approx. 2 3 that of the native-like synthetic OGP. The [Cys 15(S-NEtSucc)]OGP-NH 2 and [3-I(Tyr 10)]OGP shared only the inhibitory activity of OGP. This suppression is further shared by a number of other positively and negatively net charged, but not net neutral, peptides. Both N-terminal-modified analogues displayed a decreased binding activity to the OGPBP. All analogues except reverse OGP, [3-I(Tyr 10)]OGP and [Cys 15(S-NEtSucc)]OGP-NH 2 reacted with anti-OGP antibodies. These data are not only important for labeling purposes but suggest a respective role for the OGP N-and C-terminal regions in binding to the OGPBP and putative OGP receptor. It appears that the OGP proliferative activity represents the net effect of stimulation specific to the OGP structure and nonspecific inhibition associated with the peptide's high positive net charge.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call