Abstract

The osteogenic growth peptide (OGP) was recently characterized in regenerating bone marrow. In experimental animals in increases osteogenesis and hemopoiesis. In stromal cell cultures OGP stimulates proliferation, alkaline phosphatase activity, and matrix mineralization. OGP in high abundance is present in normal human and animal serum mainly complexed to OGP binding protein (OGPBP) or proteins. Here we show the presence of two OGPBPs, OGPBP-1, and OGPBP-2, in cultures of osteoblastic MC3T3 E1 cells. Immunoreactive OGP (irOGP) also accumulates in the medium of these cultures and in cultures of NIH 3T3 fibroblasts. A large amount of irOGP was released by heat inactivation of OGPBP-2 and purified by ultrafiltration and hydrophobic HPLC. The purified irOGP was identical to OGP obtained previously from rat regenerating bone marrow and human serum in terms of its amino acid sequence, immunoreactivity, and mitogenicity. Osteoblastic and fibroblastic cell proliferation can be arrested by anti-OGP antibodies and rescued by exogenous OGP, indicating that in the absence of serum or other exogenous growth stimulators the endogenously produced OGP is both necessary and sufficient for baseline proliferation. The OGP production is up- and down-regulated, respectively, by low and high doses of exogenous OGP in a manner consistent with an autoregulated feedback mechanism. The most effective OGP dose in MC3T3 E1 cells is at least two orders of magnitude lower than that in non-osteoblastic cell systems. This differential sensitivity of the osteoblastic cells could result in a preferential anabolic effect of OGP in bone.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call