Abstract
Human retinoid X receptor alpha (hRXR alpha) is a member of the nuclear receptor family of transcriptional regulators. It regulates transcription through its association with several heterodimeric partners, including the vitamin D3 receptor (VDR). Signaling through the VDR is essential for normal calcium homeostasis and has been shown to inhibit the proliferation of cancer cells derived from a number of tissues. Here we show that phosphorylation of hRXR alpha in ras-transformed human keratinocytes through the activated Ras-Raf-mitogen-activated protein kinase (Ras-Raf-MAP kinase) pathway results in attenuated transactivation by the VDR and resistance to the growth inhibitory action of 1,25 dihydroxyvitamin D3 [1,25(OH)2D3] and RXR-specific agonist LG1069 (4-[1-(5,6,7, 8-tetrahydro-3,5,5,8,8-pentamethyl-2-naphthalenyl) ethenyl]-benzoic acid). Phosphorylation of hRXR alpha occurs at serine 260, a consensus MAP kinase site. Inhibition of MAP kinase activity or point mutagenesis of serine 260 of hRXR alpha reverses the observed resistance to 1,25(OH)2D3 and LG1069. Thus, hRXR alpha is a downstream target of MAP kinase, and its phosphorylation may play an important role in malignant transformation.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.