Abstract

Mitochondria play a key role in a variety of physiological processes, and mitochondria-targeting drug delivery is helpful and effective in cancer therapy. Rhodamine123 (Rhod123) and Doxorubicin (Dox) are not new chemical molecules, and they both can inhibit the growth of cancerous cells. Here, we combine these two "old" chemicals with polydopamine nanoparticles (PDA NPs) to strengthen the antitumor effect with the aid of near-infrared irradiation. PDA NPs carry these two chemicals tightly by hydrogen bonds and π-π stacking besides chemical bonds. The better antitumor profile of PDA-Rhod-Dox comes from the mitochondria-targeting delivery, which decreases ATP in living cells, causing apoptosis of cancerous cells effectively and inhibiting the growth of tumors in mice. The synergistic effect of PDA, Rhod123, and Dox improves the treatment effect of conventional chemotherapy drugs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.