Abstract
Crystals of calcium oxalate monohydrate (COM) in the renal tubule form the basis of most kidney stones. Tubular dysfunction resulting from COM-cell interactions occurs by mechanism(s) that are incompletely understood. We examined the production of reactive oxygen intermediates (ROI) by proximal (LLC-PK1) and distal (MDCK) tubular epithelial cells after treatment with COM (25–250 μg/ml) to determine whether ROI, specifically superoxide (O 2 •−), production was activated, and whether it was sufficient to induce oxidative stress. Employing inhibitors of cytosolic and mitochondrial systems, the source of ROI production was investigated. In addition, intracellular glutathione (total and oxidized), energy status (ATP), and NADH were measured. COM treatment for 1–24 h increased O 2 •− production 3–6-fold as measured by both lucigenin chemiluminescence in permeabilized cells and dihydrorhodamine fluorescence in intact cells. Using selective inhibitors we found no evidence of cytosolic production. The use of mitochondrial probes, substrates, and inhibitors indicated that increased O 2 •− production originated from mitochondria. Treatment with COM decreased glutathione (total and redox state), indicating a sustained oxidative insult. An increase in NADH in COM-treated cells suggested this cofactor could be responsible for elevating O 2 •− generation. In conclusion, COM increased mitochondrial O 2 •− production by epithelial cells, with a subsequent depletion of antioxidant status. These changes may contribute to the reported cellular transformations during the development of renal calculi.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.