Abstract

The objective of this study was to further elucidate the role of oxidative stress in the aging process by determining whether or not the rates of mitochondrial superoxide anion radical and hydrogen peroxide (H 2O 2) production, the activity of cytochrome c oxidase, and the concentration of protein carbonyls are correlated with the life span potential of different species. A comparison was made among five different species of dipteran flies, namely, Drosophila melanogaster (fruit fly), Musca domestica (house fly), Sarcophaga bullata (flesh fly), Calliphora vicina (blow fly) and Phaenecia sericata (a species of blow flies), which range more than 2-fold in their life span potentials. The average life span potential of these species was found to be inversely correlated with the rates of mitochondrial superoxide and H 2O 2 production and with the level of protein carbonyls, and to be directly related to the activity of cytochrome c oxidase. The significance of these findings in context of the validity of the oxidative stress hypothesis of aging is discussed. It is inferred that longer life span potential in these insect species is associated with relatively low levels of oxidant generation and oxidative molecular damage. These results accord with our previous findings on different mammalian species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.