Abstract

Mitochondrial dysfunction caused by pathogenic mutations in mitochondrial tRNA genes emerges only when mutant mitochondrial DNA (mtDNA) proportions exceed intrinsic pathogenic thresholds; however, little is known about the actual proportions of mutant mtDNA that can affect particular cellular lineage-determining processes. Here, we mainly focused on the effects of mitochondrial respiratory dysfunction caused by m.3243A>G heteroplasmy in MT-TL1 gene on cellular reprogramming. We found that generation of induced pluripotent stem cells (iPSCs) was drastically depressed only by high proportions of mutant mtDNA (≥ 90% m.3243A>G), and these proportions were strongly associated with the degree of induced mitochondrial respiratory dysfunction. Nevertheless, all established iPSCs, even those carrying ∼ 100% m.3243A>G, exhibited an embryonic stem cell-like pluripotent state. Therefore, our findings clearly demonstrate that loss of physiological integrity in mitochondria triggered by mutant mtDNA constitute a roadblock to cellular rejuvenation, but do not affect the maintenance of the pluripotent state.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.