Abstract
BackgroundPatients with COVID‐19 display a broad spectrum of manifestations from asymptomatic to life‐threatening disease with dysregulated immune responses. Mechanisms underlying the detrimental immune responses and disease severity remain elusive.MethodsWe investigated a total of 137 APs infected with SARS‐CoV‐2. Patients were divided into mild and severe patient groups based on their requirement of oxygen supplementation. All blood samples from APs were collected within three weeks after symptom onset. Freshly isolated PBMCs were investigated for B cell subsets, their homing potential, activation state, mitochondrial functionality and proliferative response. Plasma samples were tested for cytokine concentration, and titer of Nabs, RBD‐, S1‐, SSA/Ro‐ and dsDNA‐specific IgG.ResultsWhile critically ill patients displayed predominantly extrafollicular B cell activation with elevated inflammation, mild patients counteracted the disease through the timely induction of mitochondrial dysfunction in B cells within the first week post symptom onset. Rapidly increased mitochondrial dysfunction, which was caused by infection‐induced excessive intracellular calcium accumulation, suppressed excessive extrafollicular responses, leading to increased neutralizing potency index and decreased inflammatory cytokine production. Patients who received prior COVID‐19 vaccines before infection displayed significantly decreased extrafollicular B cell responses and mild disease.ConclusionOur results reveal an immune mechanism that controls SARS‐CoV‐2‐induced detrimental B cell responses and COVID‐19 severity, which may have implications for viral pathogenesis, therapeutic interventions and vaccine development.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have