Abstract

Cancer risks attributable to low-dose and low-dose-rate radiation are a serious concern for public health. Radiation risk assessment is based on lifespan studies among Hiroshima-Nagasaki A-bomb survivors; however, there are statistical limitations due to a small sample size for low-dose radiation. Therefore, basic biological studies are helpful in understanding the mechanism of radiation carcinogenesis. The detrimental effects of ionising radiation (IR) are caused by reactive oxygen species (ROS)-mediated oxidative DNA damage. IR-induced delayed ROS are produced in the electron transport chain reaction of the mitochondrial complex. Thus, mitochondria are a source of ROS and a primary target for ROS attacks. Consequently, mitochondrial dysfunction is thought to be a key event in the metabolic changes of cancer cells and is important in radiation-induced carcinogenesis. In this paper, we present recent findings on radiation carcinogenesis effect assessment, focusing on mitochondrial function as stress sensors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.