Abstract

The aminoacylation of tRNAs by aminoacyl-tRNA synthetases (ARSs) is a central reaction in biology. Multiple regulatory pathways use the aminoacylation status of cytosolic tRNAs to monitor and regulate metabolism. The existence of equivalent regulatory networks within the mitochondria is unknown. Here, we describe a functional network that couples protein synthesis to DNA replication in animal mitochondria. We show that a duplication of the gene coding for mitochondrial seryl-tRNA synthetase (SerRS2) generated in arthropods a paralog protein (SLIMP) that forms a heterodimeric complex with a SerRS2 monomer. This seryl-tRNA synthetase variant is essential for protein synthesis and mitochondrial respiration. In addition, SLIMP interacts with the substrate binding domain of the mitochondrial protease LON, thus stimulating proteolysis of the DNA-binding protein TFAM and preventing mitochondrial DNA (mtDNA) accumulation. Thus, mitochondrial translation is directly coupled to mtDNA levels by a network based upon a profound structural modification of an animal ARS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.