Abstract

Drosophila mitochondria contain two peroxidases, peroxiredoxin 3 (dPrx3) and peroxiredoxin 5 (dPrx5), which together constitute the sole known intramitochondrial mechanism for the catalytic removal of hydrogen and organic peroxides. dPrx3 exists exclusively within mitochondria, whereas dPrx5 is also present in some other intracellular compartments. Levels of these two peroxiredoxins were genetically manipulated, singly and together, in D. melanogaster, for the purpose of understanding their respective functions. Underexpression of dPrx3 by 90–95% had no discernable effect on life span under normal or oxidative stress conditions; the dPrx5 null flies were previously reported to exhibit a 10% shortening of mean life span and an increase in sensitivity to oxidative stress. Flies underexpressing both dPrx3 and dPrx5 showed an 80% decrease in life span, a severe disruption in thiol homeostasis, and a massive induction of apoptosis in the muscle and digestive system tissues. The early mortality in flies underexpressing both peroxiredoxins was partially offset by overexpression of thioredoxin reductase but not mitochondrion-targeted catalase. These results suggest that mitochondrial peroxiredoxins confer specific protection for thioredoxin/glutathione systems, play a critical role in the maintenance of global thiol homeostasis, and prevent the age-associated apoptosis and premature death.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.