Abstract

The effects of the mitochondrial Na+/Ca2+ exchange blocker tetraphenylphosphonium (TPP+) and the permeability transition blocker cyclosporinA (CysA) on the ability of mitochondria to participate in the regulation of intracellular calcium were investigated on freshly isolated mice sensory DRG neurons. The free intracellular calcium level ([Ca2+]in) was measured using indo-1 based microfluorimetry. The characteristics of depolarization-induced [Ca2+]in transients were changed in the presence of 25 microM TPP+. The amplitude of [Ca2+]in transients became decreased and the restoration of resting [Ca2+]in level speeded up in the presence of TPP+. Application of 5 microM cyclosporinA induced substantial residual elevation of [Ca2+]in after termination of depolarization. We conclude that the mitochondrial Na+/Ca2+ exchanger mechanism plays an important role in the regulation of calcium signals during neuronal activity, prolonging them by releasing Ca2+ stored during transient peak. Activation of permeability transition pores does not participate in these processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.