Abstract
Botrytis cinerea causes gray mold on thousands of plants, leading to huge losses in production. Anilinopyrimidine (AP) fungicides have been applied to control B. cinerea since the 1990s. Although resistance to AP fungicides was detected soon after their application, the mechanism of AP resistance remains to be elucidated. In this study, a sexual cross between resistant and sensitive isolates was performed, and the genomes of parental isolates and progenies were sequenced to identify resistance-related single nucleotide polymorphisms (SNPs). After screening and verification, mutation E407K in the Bcmdl1 gene was identified and confirmed to confer resistance to AP fungicides in B. cinerea. Bcmdl1 was predicted to encode a mitochondrial protein that belonged to a half-type ATP-binding cassette (ABC) transporter. Although Bcmdl1 was a transporter, it did not mediate resistance to multiple fungicides but mediated resistance specifically to AP fungicides. On the other hand, reductions in conidial germination and virulence were observed in Bcmdl1 knockout transformants compared to the parental isolate and complemented transformants, illustrating the biological functions of Bcmdl1. Subcellular localization analysis indicated that Bcmdl1 was localized in mitochondria. Interestingly, the production of ATP was reduced after cyprodinil treatment in Bcmdl1 knockout transformants, suggesting that Bcmdl1 was involved in ATP synthesis. Since Mdl1 could interact with ATP synthase in yeast, we hypothesize that Bcmdl1 forms a complex with ATP synthase, which AP fungicides might target, thereby interfering with the metabolism of energy. IMPORTANCE Gray mold, caused by B. cinerea, causes huge losses in the production of many fruits and vegetables. AP fungicides have been largely adopted to control this disease since the 1990s, and the development of resistance to AP fungicides initiates new problems for disease control. Due to the unknown mode of action, information on the mechanism of AP resistance is also limited. Recently, mutations in mitochondrial genes were reported to be related to AP resistance. However, the mitochondrial process of these genes remains to be elucidated. In this study, we identified several AP resistance-related mutations by quantitative trait locus sequencing (QTL-seq) and confirmed that mutation E407K in Bcmdl1 conferred AP resistance. We further characterized the expression patterns, biological functions, subcellular localization, and mitochondrial processes of the Bcmdl1 gene. This study deepens our understanding of the mechanism of resistance to and mode of action of AP fungicides.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.