Abstract

The effect of myoglobin on oxygen consumption and ATP production by isolated rat skeletal muscle mitochondria was studied under steady-state conditions of oxygen supply. A method is presented for the determination of steady-state oxygen consumption in the presence of oxygen-binding proteins. Oxygen consumed in suspensions of mitochondria was replenished continuously by transfer from a flowing gas phase. Liquid-phase oxygen pressure was measured with an oxygen electrode; the gas-phase oxygen concentration was held constant at a series of fixed values. Oxygen consumption was determined from the characteristic response time of the system and the difference in the steady-state gas- and liquid-phase oxygen concentrations. ATP production was determined from the generation of glucose 6-phosphate in the presence of hexokinase. During steady-state mitochondrial oxygen consumption, the oxygen pressure in the liquid phase is enhanced when myoglobin is present. Functional myoglobin present in the solution had no effect on the relation of mitochondrial respiration and ATP production to liquid-phase oxygen pressure. Myoglobin functions in this system to enhance the flux of oxygen into the myoglobin-containing phase. Myoglobin may function in a similar fashion in muscle by increasing oxygen flux into myocytes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call