Abstract

Mitochondrial dysfunction is a hallmark of amyloid β peptide (Aβ)-induced neuronal toxicity in Alzheimer's disease (AD). However, the precise mechanism(s) of Aβ-induced mitochondrial dysfunction has not been fully understood. There is evidence that Forkhead box O3a (FOXO3a) is normally present in neuronal mitochondria. Using HT22 murine hippocampal neuronal cells and primary hippocampal neurons, the present study investigated whether mitochondrial FOXO3a was involved in mitochondrial dysfunction induced by Aβ. It was found that Aβ induced dephosphorylation and mitochondrial translocation of FOXO3a. In addition, Aβ enhanced association of FOXO3a with mitochondrial DNA (mtDNA), causing a decrease in the expression of cytochrome c oxidase subunit 1 (COX1) and the activity of COX. In addition, Aβ-induced mitochondrial dysfunction, indicated by the decrease in 3- (4,5-cimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) conversion, mitochondrial adenosine triphosphate (ATP) production and COX activity, could be suppressed by knockdown of FOXO3a (FOXO3a-KD). These results provide new insights into the mechanism underlying Aβ-induced neurotoxicity and open up new therapeutic perspectives for AD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.