Abstract
Endonuclease activity which specifically cleaves baseless (apurinic/apyrimidinic (AP] sites in supercoiled DNA has been purified from mitochondria of the mouse plasmacytoma cell line, MPC-11. Two variant forms separate upon purification; these have small but reproducible differences in catalytic and chromatographic properties, but similar physical properties. Both have a sedimentation coefficient of 4.0, corresponding to a molecular weight of 61,000 (assuming a globular configuration) and a peptide molecular weight of about 65,000 as determined by immunoblot analysis with antiserum raised against the major AP endonuclease from HeLa cells. Thus mitochondrial AP endonuclease appears to be a monomer of about 65 kDa, making it distinguishable from the major AP endonuclease of MPC-11 cells which, like those of other mammalian cells, appears to be a monomer of about 41 kDa. A possible 82-kDa precursor form was also detected by immunoblot analysis of a crude mitochondrial fraction. Mitochondrial AP endonuclease activity is greatly stimulated by divalent cations, has a pH optimum between 6.5 and 8.5, and cleaves the AP site by a class II mechanism to generate a 3'-OH nucleotide residue. These properties resemble those of the major mammalian AP endonucleases but, unlike those enzymes, mitochondrial AP endonuclease activity is neither inhibited by adenine or NAD+ nor stimulated by Triton X-100. Since the mitochondrial activity generates active primer termini for DNA synthesis, it could function in base excision DNA repair; alternatively, it might have a role in eliminating damaged mitochondrial genomes from the gene pool.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have