Abstract
The defining feature of pancreatic islet β-cell function is the precise coordination of changes in blood glucose levels with insulin secretion to regulate systemic glucose homeostasis. While ATP has long been heralded as a critical metabolic coupling factor to trigger insulin release, glucose-derived metabolites have been suggested to further amplify fuel-stimulated insulin secretion. The mitochondrial export of citrate and isocitrate through the citrate-isocitrate carrier (CIC) has been suggested to initiate a key pathway that amplifies glucose-stimulated insulin secretion, though the physiological significance of β-cell CIC to glucose homeostasis has not been established. Here, we generated constitutive and adult CIC β-cell knockout mice and demonstrate these animals have normal glucose tolerance, similar responses to diet-induced obesity, and identical insulin secretion responses to various fuel secretagogues. Glucose-stimulated NADPH production was impaired in β-cell CIC KO islets, whereas glutathione reduction was retained. Furthermore, suppression of the downstream enzyme, cytosolic isocitrate dehydrogenase, Idh1, inhibited insulin secretion in wild type islets, but failed to impact β-cell function in β-cell CIC KO islets.<b> </b>Our data demonstrate that the mitochondrial citrate-isocitrate carrier is not required for glucose-stimulated insulin secretion, and that additional complexities exist for the role of Idh1 and NADPH in the regulation of β-cell function.
Submitted Version (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have