Abstract
Mitochondrial dysfunction and oxidative stress play a central role in the pathophysiology of nonalcoholic fatty liver disease (NAFLD). This study aimed to elucidate the mechanism(s) responsible for mitochondrial dysfunction in nonalcoholic fatty liver. Fatty liver was induced in rats with a choline-deficient (CD) diet for 30 days. We examined the effect of CD diet on various parameters related to mitochondrial function such as complex I activity, oxygen consumption, reactive oxygen species (ROS) generation and cardiolipin content and oxidation. The activity of complex I was reduced by 35% in mitochondria isolated from CD livers compared with the controls. These changes in complex I activity were associated with parallel changes in state 3 respiration. Hydrogen peroxide (H 2O 2) generation was significantly increased in mitochondria isolated from CD livers. The mitochondrial content of cardiolipin, a phospholipid required for optimal activity of complex I, decreased by 38% as function of CD diet, while there was a significantly increase in the level of peroxidized cardiolipin. The lower complex I activity in mitochondria from CD livers could be completely restored to the level of control livers by exogenously added cardiolipin. This effect of cardiolipin could not be replaced by other phospholipids nor by peroxidized cardiolipin. It is concluded that CD diet causes mitochondrial complex I dysfunction which can be attributed to ROS-induced cardiolipin oxidation. These findings provide new insights into the alterations underlying mitochondrial dysfunction in NAFLD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochimica et Biophysica Acta (BBA) - Bioenergetics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.