Abstract
Recent studies have shown that mitochondria are involved in the pathogenesis of Covid-19. Mitochondria play a role in production of reactive oxygen species and induction of an innate immune response, both important during infections. Common variability of mitochondrial DNA (mtDNA) can affect oxidative phosphorylation and the risk or lethality of cardiovascular, neurodegenerative diseases and sepsis. However, it is unclear whether susceptibility of severe Covid-19 might be affected by mtDNA variation. Thus, we have analyzed mtDNA in a sample of 446 Slovak patients hospitalized due to Covid-19 and a control population group consisting of 1874 individuals. MtDNA variants in the HVRI region have been analyzed and classified into haplogroups at various phylogenetic levels. Binary logistic regression was used to assess the risk of Covid-19. Haplogroups T1, H11, K and variants 16256C > T, 16265A > C, 16293A > G, 16311 T > C and 16399A > G were associated with an increased Covid-19 risk. On contrary, Haplogroup J1, haplogroup clusters H + U5b and T2b + U5b, and the mtDNA variant 16189 T > C were associated with decreased risk of Covid-19. Following the application of the Bonferroni correction, statistical significance was observed exclusively for the cluster of haplogroups H + U5b. Unsurprisingly, the most significant factor contributing to the mortality of patients with Covid-19 is the age of patients. Our findings suggest that mtDNA haplogroups can play a role in Covid-19 pathogenesis, thus potentially useful in identifying susceptibility to its severe form. To confirm these associations, further studies taking into account the nuclear genome or other non-biological influences are needed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have