Abstract

The Atlantic auk assemblage includes four extant species, razorbill (Alca torda), dovekie (Alle alle), common murre (Uria aalge), and thick-billed murre (U. lomvia), and one recently extinct species, the flightless great auk (Pinguinus impennis). To determine the phylogenetic relationships among the species, a contiguous 4.2-kb region of the mitochondrial genome from the extant species was amplified using PCR. This region included one ribosomal RNA gene, four transfer RNA genes, two protein-coding genes, the control region, and intergenic spacers. Sets of PCR primers for amplifying the same region from great auk were designed from sequences of the extant species. The authenticity of the great auk sequence was ascertained by alternative amplifications, cloning, and separate analyses in an independent laboratory. Phylogenetic analyses of the entire assemblage, made possible by the great auk sequence, fully resolved the phylogenetic relationships and split it into two primary lineages, Uria versus Alle, Alca, and Pinguinus. A sister group relationship was identified between Alca and Pinguinus to the exclusion of ALLE: Phylogenetically, the flightless great auk originated late relative to other divergences within the assemblage. This suggests that three highly divergent species in terms of adaptive specializations, Alca, Alle, and Pinguinus, evolved from a single lineage in the Atlantic Ocean, in a process similar to the initial adaptive radiation of alcids in the Pacific Ocean.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call