Abstract
It has been shown that the intrinsic mitochondrial apoptotic cascade is activated in vascular hyperpermeability after conditions such as hemorrhagic shock. Studies from our laboratory demonstrated mitochondrial reactive oxygen species (ROS) formation in endothelial cells during vascular hyperpermeability. We hypothesized that the participation of mitochondrial ROS in the intrinsic apoptotic cascade results in microvascular endothelial cell hyperpermeability. The purpose of this study was to identify the site(s) of ROS formation in the mitochondrial complex(es) that leads to hyperpermeability. Rat lung microvascular endothelial cell monolayers were pretreated with inhibitors of the complex(es) (I-V) before the activation of the mitochondrial apoptotic cascade using the proapoptotic peptide BAK (BH3). Inhibitors of the xanthine oxidase, nicotinamide adenine dinucleotide phosphate (reduced form) oxidase, NOS, and cytochrome P-450 monooxygenase were also studied. The hyperpermeability was determined by the fluorescence of fluorescein isothiocyanate-albumin that leaked across endothelial cells and ROS production by 2',7& rime;-dichlorofluorescein diacetate. Cytochrome c levels were also measured. BAK (BH3)-transfected cells showed increased ROS, cytosolic cytochrome c, and hyperpermeability (P<0.05). Complex III inhibitors antimycin A (10 microM) and stigmatellin (10 microM) attenuated BAK (BH3)-mediated ROS formation and hyperpermeability (P<0.05). The complex III inhibition decreased BAK (BH3)-mediated cytochrome c release. The results suggest that mitochondrial ROS formation, particularly at respiratory chain complex III, is involved in BAK-induced monolayer hyperpermeability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.