Abstract
Caspase-independent cell death, an important death pathway in many cells including neurons, is executed via apoptosis-inducing factor (AIF), an oxidoreductase, localized to the mitochondrial intermembrane space. AIF is processed and released from mitochondria following mitochondrial permeability transition pore (mPTP) formation, and translocates to the nucleus to induce DNA fragmentation and cell death. The release of AIF requires cleavage of its N-terminus anchored in the inner mitochondrial membrane. The protease responsible for this AIF truncation has not been established, although there is considerable evidence suggesting a role for μ-calpain. We previously found that a pool of μ-calpain is localized to the mitochondrial intermembrane space, the submitochondrial compartment in which AIF truncation occurs. The close submitochondrial proximity of mitochondrial μ-calpain and AIF gives support to the hypothesis that mitochondrial μ-calpain may be the protease responsible for processing AIF prior to its release. In the present study, AIF was released from rat liver mitochondria following mPTP induction by atractyloside. This release was inhibited by the cysteine protease inhibitor MDL28170, but not by more specific calpain inhibitors PD150606 and calpastatin. Atractyloside caused swelling in rat brain mitochondria, but did not induce AIF release. In a mitochondrial fraction from SH-SY5Y neuroblastoma cells, incubation with 5 mM Ca 2+ resulted in the activation of μ-calpain but not in AIF truncation. In summary, the localization of μ-calpain to the mitochondrial intermembrane space is suggestive of its possible involvement in AIF processing, but direct experimental evidence supporting such a role has been elusive.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.