Abstract
Several mechanisms have been implicated in heart failure (HF) development due to obesity, including altered Ca2+ homeostasis and mitochondrial increased reactive oxygen species (ROS). Besides their metabolic role, mitochondria are important cell death regulators, since their disruption induces apoptosis. The mitochondrial permeability transition pore (MPTP) formation is key in this process. Ca2+ and ROS are known inducers of MPTP, and mitochondria are the main ROS generators. However, it has not been demonstrated that MPTP formation is involved in cardiac cell death due to obesity. Therefore, the aim of this work was to determine whether Ca2+ alterations and/or MPTP opening underlie cardiac dysfunction. We used obese Zucker fa/fa rats (32 weeks old), displaying concentric hypertrophy and cardiac dysfunction. We measured: i) Systolic and diastolic Ca2+ signaling in isolated myocytes, in basal conditions and upon β-adrenergic stimulation (β-AS), and ii) in vitro mitochondrial function: respiration, ROS production and MPTP opening. We found that the main alteration in Ca2+ signaling in fa/fa myocytes was a decrease in SERCA Ca2+ removal capacity, since Ca2+ transient amplitude and spark frequency were unchanged. Furthermore, in fa/fa myocytes, β-AS response was preserved. On the other hand, fa/fa mitochondria respiration, in state 3 decreased, but was unchanged in state 4, when glutamate/malate were used as substrate, resulting in an small decrease in respiratory control. In addition, fa/fa mitochondria were more sensitive to MPTP opening, induced by Ca2+ and carboxyatractiloside (CAT). Moreover, fa/fa mitochondria showed increased H2O2 production, and in exposed thiol groups in the adenine nucleotide translocase, a regulatory MPTP component. Since Ca2+ signaling is relatively normal in fa/fa cells, it does not seem to be the main contributor to the cardiac contractile dysfunction. However, given that fa/fa mitochondria showed decrease respiratory performance, were more susceptible to MPTP opening, and showed enhanced H2O2 production. We conclude that fa/fa mitochondria were more vulnerable to enhanced oxidative stress, causing MPTP opening, which could be exacerbated by SERCA slower Ca2+ removal capacity, leading to myocyte apoptosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.