Abstract
Copper (Cu) can be harmful to host physiology at high levels, although it is still unclear exactly how it causes nephrotoxicity. Mitochondrial dysfunction and endoplasmic reticulum (ER) stress are associated with heavy metal intoxication. Meanwhile, mitochondria and ER are connected via mitochondria-associated ER membranes (MAM). In order to reveal the crosstalk between them, a total of 144 1-day-old Peking ducks were randomly divided into four groups: control (basal diet), 100mg/kg Cu, 200mg/kg Cu, and 400mg/kg Cu groups. Results found that excessive Cu disrupted MAM integrity, reduced the co-localization of IP3R and VDAC1, and significantly changed the MAM-related factors levels (Grp75, Mfn2, IP3R, MCU, PACS2, and VDAC1), leading to MAM dysfunction. We further found that Cu exposure induced mitochondrial dysfunction via decreasing the ATP level and the expression levels of COX4, TOM20, SIRT1, and OPA1 and up-regulating Parkin expression level. Meanwhile, Cu exposure dramatically increased the expression levels of Grp78, CRT, and ATF4, resulting in ER stress. Overall, these findings demonstrated MAM plays the critical role in Cu-induced kidney mitochondrial dysfunction and ER stress, which deepened our understanding of Cu-induced nephrotoxicity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.