Abstract

Mitochondrial dysfunction is implicated in the pathological mechanism of Alzheimer's disease (AD). Amyloid β-protein (Aβ), which plays a central role in AD pathogenesis, is reported to accumulate within mitochondria. However, a question remains as to whether Aβ is generated locally from amyloid precursor protein (APP) within mitochondria. We investigated this issue by analyzing the expression patterns of APP, APP-processing secretases, and APP metabolites in mitochondria separated from human neuroblastoma SH-SY5Y cells and those expressing Swedish mutant APP. APP, BACE1, and PEN-2 protein levels were significantly lower in crude mitochondria than microsome fractions while those of ADAM10 and the other γ-secretase complex components (presenilin 1, nicastrin, and APH-1) were comparable between fractions. The crude mitochondrial fraction containing substantial levels of cathepsin D, a lysosomal marker, was further separated via iodixanol gradient centrifugation to obtain mitochondria- and lysosome-enriched fractions. Mature APP, BACE1, and all γ-secretase complex components (in particular, presenilin 1 and PEN-2) were scarcely present in the mitochondria-enriched fraction, compared to the lysosome-enriched fraction. Moreover, expression of the β-C-terminal fragment (β-CTF) of APP was markedly low in the mitochondria-enriched fraction. Additionally, immunocytochemical analysis showed very little co-localization between presenilin 1 and Tom20, a marker protein of mitochondria. In view of the particularly low expression levels of BACE1, γ-secretase complex proteins, and β-CTF in mitochondria, we propose that it is unlikely that Aβ generation from APP occurs locally within this organelle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call