Abstract

The effects of electron nonlocal heat transport (NLHT) on the two-dimensional single-mode ablative Rayleigh–Taylor instability (ARTI) up to the highly nonlinear phase are reported for the first time through numerical simulations with a multigroup diffusion model. It is found that as well as its role in the linear stabilization of ARTI growth, NLHT can also mitigate ARTI bubble nonlinear growth after the first saturation to the classical terminal velocity, compared with what is predicted by the local Spitzer–Härm model. The key factor affecting the reduction in the linear growth rate is the enhancement of the ablation velocity Va by preheating. It is found that NLHT mitigates nonlinear bubble growth through a mechanism involving reduction of vorticity generation. NLHT enhances ablation near the spike tip and slows down the spike, leading to weaker vortex generation as the pump of bubble reacceleration in the nonlinear stage. NLHT more effectively reduces the nonlinear growth of shorter-wavelength ARTI modes seeded by the laser imprinting phase in direct-drive laser fusion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call