Abstract

The osmotic membrane bioreactor (OMBR) is an emerging technology that uses water osmosis to accomplish separation of biomass from the treated effluent; however, accumulation of salts in the wastewater due to water flux and loss of draw solute because of reverse salt flux seriously hinder OMBR development. In this study, a hybrid OMBR-electrodialysis (ED) system was proposed and investigated to alleviate the salinity buildup. The use of an ED (3 V applied) could maintain a relatively low conductivity of 8 mS cm(-1) in the feed solution, which allowed the OMBR to operate for 24 days, about 6 times longer than a conventional OMBR without a functional ED. It was found that the higher the voltage applied to the ED, the smaller area of ion-exchange membrane was needed for salt separation. The salts recovered by the ED were successfully reused as a draw solute in the OMBR. At an energy consumption of 1.88-4.01 kWh m(-3), the hybrid OMBR-ED system could achieve a stable water flux of about 6.23 L m(-2) h(-1) and an efficient waste salt recovery of 1.26 kg m(-3). The hybrid OMBR-ED system could be potentially more advantageous in terms of less waste saline water discharge and salt recovery compared with a combined OMBR and reverse osmosis system. It also offers potential advantages over the conventional OMBR+post ED treatment in higher water flux and less wastewater discharge.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call