Abstract

Endoplasmic reticulum stress (ERS) plays a crucial role in the pathogenesis of diabetic nephropathy (DN), and it is often accompanied by an increase in reactive oxygen species (ROS) production. However, the precise relationship between nuclear factor erythroid 2-related factor 2 (Nrf2), a key regulator of ROS balance, and ERS in DN remains elusive. This study aimed to investigate the impact of Nrf2 on ERS and its therapeutic potential in DN. Herein, ERS-related changes, including increased activating transcription factor-6 (ATF6), glucose-regulated protein 78 (GRP78), and transcription factor C/EBP homologous protein (CHOP) expression, were observed in the renal tissues of streptozotocin-induced DN mice and high glucose cultured human renal proximal tubular (HK-2) cells. Nrf2 knockdown increased the sensitivity of HK-2 cells to ERS under high glucose conditions, underscoring the regulatory role of Nrf2 in ERS modulation. Notably, upregulating Nrf2 in ezetimibe-treated diabetic mice restored ERS markers and ameliorated albuminuria, glomerular hypertrophy, mesangial expansion, and tubulointerstitial fibrosis. Furthermore, the inhibition of ERS in HK-2 cells by the ROS scavenger, N-acetylcysteine, highlights the interplay between ROS and ERS. This study, for the first time, elucidates that the upregulation of Nrf2 may alleviate the negative influence of ROS-mediated ERS, presenting a promising therapeutic avenue for delaying the progression of DN. These findings suggest a potential strategy for targeting Nrf2 and ERS in developing novel therapeutic interventions for DN.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call