Abstract
This letter investigates the mitigation of reverse short-channel effect (RSCE) using multilayer atomic layer deposition (ALD) TiN/PVD Ti/CVD TiN metal gates (MG) for the p-channel metal-oxide-semiconductor field-effect transistors fabricated the by gate-last process. It is found that work function (WF) of multilayer ALD titanium nitride/physical vapor deposition titanium/chemical vapor deposition titanium nitride (ALD TiN/PVD Ti/CVD TiN) MG in devices of short channels is larger than in devices of long channels. This mainly results from different ALD TiN crystal orientations for devices with different gate lengths, that is, TiN(100) for devices with short gate length, whereas TiN(111) for devices with long gate length. The WF of ALD TiN(100) is larger than TiN(111). Meanwhile, because of the property of PVD sputtering, the Ti layer is thinner in devices of short channels than in devices of long channels. Our results on MOSCAP show that the flat-band voltage (V <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">fb</sub> ) for TiN MG with a Ti layer is reduced by 0.2 V. Taking all the aforementioned into account, V <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">th</sub> roll-up is suppressed as the gate length shrinks, leading to the mitigation of RSCE.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.