Abstract
Here we describe a novel strategy for mitigation of ionizing radiation-induced hematopoietic syndrome by suppressing the activity of MKP3, resulting in ERK activation and enhanced abundance of hematopoietic stem cells, using the antioxidant flavonoid baicalein (5,6,7-trihydroxyflavone). It offered complete protection to mouse splenic lymphocytes against radiation-induced cell death. Inhibitors of ERK and Nrf-2 could significantly abrogate baicalein-mediated radioprotection in lymphocytes. Baicalein inhibited phosphatase MKP3 and thereby enhanced phosphorylation of ERK and its downstream proteins such as Elk and Nrf-2. It also increased the nuclear levels of Nrf-2 and the mRNA levels of its dependent genes. Importantly, baicalein administration to mice before radiation exposure led to significant recovery of loss of bone marrow cellularity and also inhibited cell death. Administration of baicalein increased the hematopoietic stem cell frequency as measured by side-population assay and also by antibody staining. Further, baicalein offered significant protection against whole-body irradiation (WBI; 7.5Gy)-induced mortality in mice. Interestingly, we found that baicalein works by activating the same target molecules ERK and Nrf-2 both in vitro and in vivo. Finally, administration of all-trans-retinoic acid (inhibitor of Nrf-2) significantly abrogated baicalein-mediated protection against WBI-induced mortality in mice. Thus, in contrast to the generalized conception of antioxidants acting as radioprotectors, we provide a rationale that antioxidants exhibit pleiotropic effects through the activation of multiple cellular signaling pathways.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.