Abstract

PM emission is one of key issues in the biomass combustion of heat and power plants. In this paper, rice husk (RH) was co-combusted with cotton stalk (CSK) or cornstalk (CS) to study the PM emission behaviors. The experimental results show that the addition decreases PM1 yields by 20.13–54.65% for CSK and 45.99–76.70% for CS in comparison to the CSK or CS combustion alone. A strong synergistic effect exists during the co-combustion process, which can appreciably inhibit the generation of fine particulate matter. The synergistic effect is caused by the physical dilution effect, and mainly by the reaction between alkali metals species in cornstalk/cotton stalk ash and Si-containing species in rice husk ash to inhibit the volatilization of alkali metals. However, the PM reduction degree is also affected by the ash chemistry, especially the Si/(Ca + Mg) ratio, as confirmed by the higher synergistic effect of rice husk/cornstalk compared to rice husk/cotton stalk. The results suggest that co-combustion of biomass with high Si-containing rice husk is a promising approach to reduce PM1 emissions during biomass co-combustion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.