Abstract

Ni-rich materials have received widespread attention as one of the mainstream cathodes in high-energy-density lithium-ion batteries for electric vehicles. However, Ni-rich cathodes suffer from severe surface reconstruction in a high delithiation state, constraining their rate capabilities and life span. Herein, a novel P2-type NaxNi0.33Mn0.67O2 (NNMO) is rationally selected as the surficial modification layer for LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode, which undergoes a spontaneous Na+-Li+ exchange reaction to form an O2-type LixNi0.33Mn0.67O2 (LNMO) layer revealed by combining X-ray diffraction and solid-state nuclear magnetic resonance techniques. Owing to the specific oxygen stacking sequence, O2-type LNMO significantly prevents the initial layered structure of NCM811 from transforming to the spinel or rock-salt phases during cycling, thus effectively maintaining the integral surficial structure and the Li+ diffusion channels of NCM811. Eventually, the NNMO@NCM811 electrode yields enhanced thermal stability, outstanding rate performance, and long cycling stability with 80% capacity retention after 294 cycles at 200 mA g-1, and its life span is further extended to 531 cycles while enhancing the mechanical stability of the bulk material.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.