Abstract

Despite issues related to dendrite formation, research on Li metal anodes has resurged because of their high energy density. In this study, graphene oxide (GO) layers are decorated onto Li metal anodes through a simple process of drop-casting and spray-coating. The self-assembly of GO is exploited to synthesize coatings having compact, mesoporous, and macroporous morphologies. The abilities of the GO coatings to suppress dendrite formation are compared through Li|Li symmetrical cell charging at a current density of 5 mA cm-2 for 2000 cycles-a particularly abusive test. The macroporous structure possesses the lowest impedance, whereas the compact structure excels in terms of stability. Moreover, GO exhibits a low nucleation overpotential and is transformed into reduced GO with enhanced conductivity during the operation of the cells; both factors synergistically mitigate the issue of dendrite formation. Li-S batteries incorporating the GO-decorated Li anodes exhibit an initial capacity of 850 mA h g-1 and maintain their stability for 800 cycles at a C-rate of 1 C (1675 mA h g-1), suggesting the applicability of GO in future rechargeable batteries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.