Abstract

Cryptographic circuits are sensitive to electromagnetic (EM) side-channel attacks (SCAs), which aim to detect the EM emissions of these circuits. A novel technique is proposed to mitigate such attacks, by reducing the correlation between the processed data and EM emissions. This objective is achieved by combining energy-efficient data inversion with dynamic delay insertion. The added delay enhances the immunity against EM attacks for the cryptographic circuit without performance degradation and, in specific scenarios, even improves performance. Simulation results on a set of EM traces, captured from an 8-bit interposer-based off-chip memory bus, demonstrate the efficiency of the proposed technique by decreasing SNR below 1 and improving the worst-case bus latency by 9.5%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.