Abstract
There are two major problems when deploying a practical intent detection system for a new customer. First, domain-specific data from the customer could be limited and imbalanced. Additionally, despite different customers might share the same domain, their intent categories might be different from each other. Thus, it might be difficult to combine the datasets collected for different customers into a single and larger one. In this paper, we use class weights in the loss computation to alleviate the data imbalance problem. The class weights are defined inversely proportional to the frequency of the class in the training set in order to give more influence to less observed classes. We also employ a two-pass fine-tuning procedure to utilize the information in different in-domain datasets. Experimental results show that intent detection performance is improved significantly when the weighted loss function is used together with the two-pass transfer learning procedure. The absolute performance improvement in percent detection accuracy is approximately 2% over a transformer-based baseline.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.