Abstract

BackgroundThe plasticity of T helper-17 (Th17) and regulatory T (Treg) cells may be a clue to pathogenesis of Juvenile Idiopathic Arthritis (JIA). It is still unclear, whether targeted suppression of Interleukin (IL)-17 is able to influence regulatory function of Treg to control pro-inflammatory effectors in JIA. This study aimed to assess the effect of a Th17-stimulating cytokine environment and of IL-17A-inhibition on phenotype plasticity and suppressive function of Treg derived from JIA patients.MethodsTh17 and Treg characteristics of CD4+ helper T cells were investigated in blood samples of JIA patients with oligo- and polyarticular pattern and healthy controls (HC). Isolated CD4+CD25+CD127− cells defined as Treg were cultivated with Th17-inducing cytokine environment as well as with IL-17A-inhibitors and analyzed for plasticity of phenotype by flow cytometry. Furthermore, inhibitory function of Treg on autologous effectors after cultivation with these stimuli was determined by suppression assays.ResultsOur findings demonstrated significantly elevated proportions of Th17 and Th17-like Treg in JIA compared to HC. After incubation with Th17-inducing stimuli, increased FoxP3 expression in separated Treg in JIA and an impaired suppressive capacity in JIA and HC were found. Blockade of IL-17A resulted in adjustment of FoxP3-expression in JIA to proportions found in controls and in regular suppressive function.ConclusionsOur results demonstrate an induction of FoxP3 expressing Treg by Th17-inducing cytokines with concomitant mitigated suppressive function. In contrast, specific IL-17A blockade maintains suppressive Treg function and adjusted FoxP3-expression in JIA to levels found in controls. These findings may help to provide experimental evidence for the successful clinical use of IL-17A inhibition in JIA patients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.